1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// Translated from C to Rust. The original C code can be found at
// https://github.com/ulfjack/ryu and carries the following license:
//
// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
//    (See accompanying file LICENSE-Apache or copy at
//     http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE-Boost or copy at
//     https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.

use core::{mem, ptr};

use common::*;
#[cfg(not(feature = "small"))]
use d2s_full_table::*;
#[cfg(feature = "small")]
use d2s_small_table::*;
use digit_table::*;
use d2s_intrinsics::*;

#[cfg(feature = "no-panic")]
use no_panic::no_panic;

pub const DOUBLE_MANTISSA_BITS: u32 = 52;
pub const DOUBLE_EXPONENT_BITS: u32 = 11;

const DOUBLE_POW5_INV_BITCOUNT: i32 = 122;
const DOUBLE_POW5_BITCOUNT: i32 = 121;

#[cfg_attr(feature = "no-panic", inline)]
fn pow5_factor(mut value: u64) -> u32 {
    let mut count = 0u32;
    loop {
        debug_assert!(value != 0);
        let q = div5(value);
        let r = (value - 5 * q) as u32;
        if r != 0 {
            break;
        }
        value = q;
        count += 1;
    }
    count
}

// Returns true if value is divisible by 5^p.
#[cfg_attr(feature = "no-panic", inline)]
fn multiple_of_power_of_5(value: u64, p: u32) -> bool {
    // I tried a case distinction on p, but there was no performance difference.
    pow5_factor(value) >= p
}

// Returns true if value is divisible by 2^p.
#[cfg_attr(feature = "no-panic", inline)]
fn multiple_of_power_of_2(value: u64, p: u32) -> bool {
    // return __builtin_ctzll(value) >= p;
    (value & ((1u64 << p) - 1)) == 0
}

#[cfg(integer128)]
#[cfg_attr(feature = "no-panic", inline)]
fn mul_shift(m: u64, mul: &(u64, u64), j: u32) -> u64 {
    let b0 = m as u128 * mul.0 as u128;
    let b2 = m as u128 * mul.1 as u128;
    (((b0 >> 64) + b2) >> (j - 64)) as u64
}

#[cfg(integer128)]
#[cfg_attr(feature = "no-panic", inline)]
fn mul_shift_all(
    m: u64,
    mul: &(u64, u64),
    j: u32,
    vp: &mut u64,
    vm: &mut u64,
    mm_shift: u32,
) -> u64 {
    *vp = mul_shift(4 * m + 2, mul, j);
    *vm = mul_shift(4 * m - 1 - mm_shift as u64, mul, j);
    mul_shift(4 * m, mul, j)
}

#[cfg(not(integer128))]
#[cfg_attr(feature = "no-panic", inline)]
fn mul_shift_all(
    mut m: u64,
    mul: &(u64, u64),
    j: u32,
    vp: &mut u64,
    vm: &mut u64,
    mm_shift: u32,
) -> u64 {
    m <<= 1;
    // m is maximum 55 bits
    let (lo, tmp) = umul128(m, mul.0);
    let (mut mid, mut hi) = umul128(m, mul.1);
    mid = mid.wrapping_add(tmp);
    hi = hi.wrapping_add((mid < tmp) as u64); // overflow into hi

    let lo2 = lo.wrapping_add(mul.0);
    let mid2 = mid.wrapping_add(mul.1).wrapping_add((lo2 < lo) as u64);
    let hi2 = hi.wrapping_add((mid2 < mid) as u64);
    *vp = shiftright128(mid2, hi2, j - 64 - 1);

    if mm_shift == 1 {
        let lo3 = lo.wrapping_sub(mul.0);
        let mid3 = mid.wrapping_sub(mul.1).wrapping_sub((lo3 > lo) as u64);
        let hi3 = hi.wrapping_sub((mid3 > mid) as u64);
        *vm = shiftright128(mid3, hi3, j - 64 - 1);
    } else {
        let lo3 = lo + lo;
        let mid3 = mid.wrapping_add(mid).wrapping_add((lo3 < lo) as u64);
        let hi3 = hi.wrapping_add(hi).wrapping_add((mid3 < mid) as u64);
        let lo4 = lo3.wrapping_sub(mul.0);
        let mid4 = mid3.wrapping_sub(mul.1).wrapping_sub((lo4 > lo3) as u64);
        let hi4 = hi3.wrapping_sub((mid4 > mid3) as u64);
        *vm = shiftright128(mid4, hi4, j - 64);
    }

    shiftright128(mid, hi, j - 64 - 1)
}

#[cfg_attr(feature = "no-panic", inline)]
pub fn decimal_length(v: u64) -> u32 {
    // This is slightly faster than a loop.
    // The average output length is 16.38 digits, so we check high-to-low.
    // Function precondition: v is not an 18, 19, or 20-digit number.
    // (17 digits are sufficient for round-tripping.)
    debug_assert!(v < 100000000000000000);

    if v >= 10000000000000000 {
        17
    } else if v >= 1000000000000000 {
        16
    } else if v >= 100000000000000 {
        15
    } else if v >= 10000000000000 {
        14
    } else if v >= 1000000000000 {
        13
    } else if v >= 100000000000 {
        12
    } else if v >= 10000000000 {
        11
    } else if v >= 1000000000 {
        10
    } else if v >= 100000000 {
        9
    } else if v >= 10000000 {
        8
    } else if v >= 1000000 {
        7
    } else if v >= 100000 {
        6
    } else if v >= 10000 {
        5
    } else if v >= 1000 {
        4
    } else if v >= 100 {
        3
    } else if v >= 10 {
        2
    } else {
        1
    }
}

// A floating decimal representing m * 10^e.
pub struct FloatingDecimal64 {
    pub mantissa: u64,
    pub exponent: i32,
}

#[cfg_attr(feature = "no-panic", inline)]
pub fn d2d(ieee_mantissa: u64, ieee_exponent: u32) -> FloatingDecimal64 {
    let bias = (1u32 << (DOUBLE_EXPONENT_BITS - 1)) - 1;

    let (e2, m2) = if ieee_exponent == 0 {
        (
            // We subtract 2 so that the bounds computation has 2 additional bits.
            1 - bias as i32 - DOUBLE_MANTISSA_BITS as i32 - 2,
            ieee_mantissa,
        )
    } else {
        (
            ieee_exponent as i32 - bias as i32 - DOUBLE_MANTISSA_BITS as i32 - 2,
            (1u64 << DOUBLE_MANTISSA_BITS) | ieee_mantissa,
        )
    };
    let even = (m2 & 1) == 0;
    let accept_bounds = even;

    // Step 2: Determine the interval of legal decimal representations.
    let mv = 4 * m2;
    // Implicit bool -> int conversion. True is 1, false is 0.
    let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32;
    // We would compute mp and mm like this:
    // uint64_t mp = 4 * m2 + 2;
    // uint64_t mm = mv - 1 - mm_shift;

    // Step 3: Convert to a decimal power base using 128-bit arithmetic.
    let mut vr: u64;
    let mut vp: u64 = unsafe { mem::uninitialized() };
    let mut vm: u64 = unsafe { mem::uninitialized() };
    let e10: i32;
    let mut vm_is_trailing_zeros = false;
    let mut vr_is_trailing_zeros = false;
    if e2 >= 0 {
        // I tried special-casing q == 0, but there was no effect on performance.
        // This expression is slightly faster than max(0, log10_pow2(e2) - 1).
        let q = (log10_pow2(e2) - (e2 > 3) as i32) as u32;
        e10 = q as i32;
        let k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q as i32) as i32 - 1;
        let i = -e2 + q as i32 + k;
        vr = mul_shift_all(
            m2,
            #[cfg(feature = "small")]
            unsafe {
                &compute_inv_pow5(q)
            },
            #[cfg(not(feature = "small"))]
            unsafe {
                debug_assert!(q < DOUBLE_POW5_INV_SPLIT.len() as u32);
                DOUBLE_POW5_INV_SPLIT.get_unchecked(q as usize)
            },
            i as u32,
            &mut vp,
            &mut vm,
            mm_shift,
        );
        if q <= 21 {
            // This should use q <= 22, but I think 21 is also safe. Smaller values
            // may still be safe, but it's more difficult to reason about them.
            // Only one of mp, mv, and mm can be a multiple of 5, if any.
            let mv_mod5 = (mv - 5 * div5(mv)) as u32;
            if mv_mod5 == 0 {
                vr_is_trailing_zeros = multiple_of_power_of_5(mv, q);
            } else if accept_bounds {
                // Same as min(e2 + (~mm & 1), pow5_factor(mm)) >= q
                // <=> e2 + (~mm & 1) >= q && pow5_factor(mm) >= q
                // <=> true && pow5_factor(mm) >= q, since e2 >= q.
                vm_is_trailing_zeros = multiple_of_power_of_5(mv - 1 - mm_shift as u64, q);
            } else {
                // Same as min(e2 + 1, pow5_factor(mp)) >= q.
                vp -= multiple_of_power_of_5(mv + 2, q) as u64;
            }
        }
    } else {
        // This expression is slightly faster than max(0, log10_pow5(-e2) - 1).
        let q = (log10_pow5(-e2) - (-e2 > 1) as i32) as u32;
        e10 = q as i32 + e2;
        let i = -e2 - q as i32;
        let k = pow5bits(i) as i32 - DOUBLE_POW5_BITCOUNT;
        let j = q as i32 - k;
        vr = mul_shift_all(
            m2,
            #[cfg(feature = "small")]
            unsafe {
                &compute_pow5(i as u32)
            },
            #[cfg(not(feature = "small"))]
            unsafe {
                debug_assert!(i < DOUBLE_POW5_SPLIT.len() as i32);
                DOUBLE_POW5_SPLIT.get_unchecked(i as usize)
            },
            j as u32,
            &mut vp,
            &mut vm,
            mm_shift,
        );
        if q <= 1 {
            // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
            // mv = 4 * m2, so it always has at least two trailing 0 bits.
            vr_is_trailing_zeros = true;
            if accept_bounds {
                // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1.
                vm_is_trailing_zeros = mm_shift == 1;
            } else {
                // mp = mv + 2, so it always has at least one trailing 0 bit.
                vp -= 1;
            }
        } else if q < 63 {
            // TODO(ulfjack): Use a tighter bound here.
            // We need to compute min(ntz(mv), pow5_factor(mv) - e2) >= q - 1
            // <=> ntz(mv) >= q - 1  &&  pow5_factor(mv) - e2 >= q - 1
            // <=> ntz(mv) >= q - 1    (e2 is negative and -e2 >= q)
            // <=> (mv & ((1 << (q - 1)) - 1)) == 0
            // We also need to make sure that the left shift does not overflow.
            vr_is_trailing_zeros = multiple_of_power_of_2(mv, q - 1);
        }
    }

    // Step 4: Find the shortest decimal representation in the interval of legal representations.
    let mut removed = 0u32;
    let mut last_removed_digit = 0u8;
    // On average, we remove ~2 digits.
    let output = if vm_is_trailing_zeros || vr_is_trailing_zeros {
        // General case, which happens rarely (~0.7%).
        loop {
            let vp_div10 = div10(vp);
            let vm_div10 = div10(vm);
            if vp_div10 <= vm_div10 {
                break;
            }
            let vm_mod10 = (vm - 10 * vm_div10) as u32;
            let vr_div10 = div10(vr);
            let vr_mod10 = (vr - 10 * vr_div10) as u32;
            vm_is_trailing_zeros &= vm_mod10 == 0;
            vr_is_trailing_zeros &= last_removed_digit == 0;
            last_removed_digit = vr_mod10 as u8;
            vr = vr_div10;
            vp = vp_div10;
            vm = vm_div10;
            removed += 1;
        }
        if vm_is_trailing_zeros {
            loop {
                let vm_div10 = div10(vm);
                let vm_mod10 = (vm - 10 * vm_div10) as u32;
                if vm_mod10 != 0 {
                    break;
                }
                let vp_div10 = div10(vp);
                let vr_div10 = div10(vr);
                let vr_mod10 = (vr - 10 * vr_div10) as u32;
                vr_is_trailing_zeros &= last_removed_digit == 0;
                last_removed_digit = vr_mod10 as u8;
                vr = vr_div10;
                vp = vp_div10;
                vm = vm_div10;
                removed += 1;
            }
        }
        if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 {
            // Round even if the exact number is .....50..0.
            last_removed_digit = 4;
        }
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
        vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5)
            as u64
    } else {
        // Specialized for the common case (~99.3%). Percentages below are relative to this.
        let mut round_up = false;
        let vp_div100 = div100(vp);
        let vm_div100 = div100(vm);
        // Optimization: remove two digits at a time (~86.2%).
        if vp_div100 > vm_div100 {
            let vr_div100 = div100(vr);
            let vr_mod100 = (vr - 100 * vr_div100) as u32;
            round_up = vr_mod100 >= 50;
            vr = vr_div100;
            vp = vp_div100;
            vm = vm_div100;
            removed += 2;
        }
        // Loop iterations below (approximately), without optimization above:
        // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
        // Loop iterations below (approximately), with optimization above:
        // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
        loop {
            let vp_div10 = div10(vp);
            let vm_div10 = div10(vm);
            if vp_div10 <= vm_div10 {
                break;
            }
            let vr_div10 = div10(vr);
            let vr_mod10 = (vr - 10 * vr_div10) as u32;
            round_up = vr_mod10 >= 5;
            vr = vr_div10;
            vp = vp_div10;
            vm = vm_div10;
            removed += 1;
        }
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
        vr + (vr == vm || round_up) as u64
    };
    let exp = e10 + removed as i32;

    FloatingDecimal64 {
        exponent: exp,
        mantissa: output,
    }
}

#[cfg_attr(feature = "no-panic", inline)]
unsafe fn to_chars(v: FloatingDecimal64, sign: bool, result: *mut u8) -> usize {
    // Step 5: Print the decimal representation.
    let mut index = 0isize;
    if sign {
        *result.offset(index) = b'-';
        index += 1;
    }

    let mut output = v.mantissa;
    let olength = decimal_length(output);

    // Print the decimal digits.
    // The following code is equivalent to:
    // for (uint32_t i = 0; i < olength - 1; ++i) {
    //   const uint32_t c = output % 10; output /= 10;
    //   result[index + olength - i] = (char) ('0' + c);
    // }
    // result[index] = '0' + output % 10;

    let mut i = 0isize;
    // We prefer 32-bit operations, even on 64-bit platforms.
    // We have at most 17 digits, and uint32_t can store 9 digits.
    // If output doesn't fit into uint32_t, we cut off 8 digits,
    // so the rest will fit into uint32_t.
    if (output >> 32) != 0 {
        // Expensive 64-bit division.
        let q = div100_000_000(output);
        let mut output2 = (output - 100_000_000 * q) as u32;
        output = q;

        let c = output2 % 10000;
        output2 /= 10000;
        let d = output2 % 10000;
        let c0 = (c % 100) << 1;
        let c1 = (c / 100) << 1;
        let d0 = (d % 100) << 1;
        let d1 = (d / 100) << 1;
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(c0 as usize),
            result.offset(index + olength as isize - i - 1),
            2,
        );
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(c1 as usize),
            result.offset(index + olength as isize - i - 3),
            2,
        );
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(d0 as usize),
            result.offset(index + olength as isize - i - 5),
            2,
        );
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(d1 as usize),
            result.offset(index + olength as isize - i - 7),
            2,
        );
        i += 8;
    }
    let mut output2 = output as u32;
    while output2 >= 10000 {
        let c = (output2 - 10000 * (output2 / 10000)) as u32;
        output2 /= 10000;
        let c0 = (c % 100) << 1;
        let c1 = (c / 100) << 1;
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(c0 as usize),
            result.offset(index + olength as isize - i - 1),
            2,
        );
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(c1 as usize),
            result.offset(index + olength as isize - i - 3),
            2,
        );
        i += 4;
    }
    if output2 >= 100 {
        let c = ((output2 % 100) << 1) as u32;
        output2 /= 100;
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked(c as usize),
            result.offset(index + olength as isize - i - 1),
            2,
        );
        i += 2;
    }
    if output2 >= 10 {
        let c = (output2 << 1) as u32;
        // We can't use memcpy here: the decimal dot goes between these two digits.
        *result.offset(index + olength as isize - i) = *DIGIT_TABLE.get_unchecked(c as usize + 1);
        *result.offset(index) = *DIGIT_TABLE.get_unchecked(c as usize);
    } else {
        *result.offset(index) = b'0' + output2 as u8;
    }

    // Print decimal point if needed.
    if olength > 1 {
        *result.offset(index + 1) = b'.';
        index += olength as isize + 1;
    } else {
        index += 1;
    }

    // Print the exponent.
    *result.offset(index) = b'E';
    index += 1;
    let mut exp = v.exponent as i32 + olength as i32 - 1;
    if exp < 0 {
        *result.offset(index) = b'-';
        index += 1;
        exp = -exp;
    }

    if exp >= 100 {
        let c = exp % 10;
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked((2 * (exp / 10)) as usize),
            result.offset(index),
            2,
        );
        *result.offset(index + 2) = b'0' + c as u8;
        index += 3;
    } else if exp >= 10 {
        ptr::copy_nonoverlapping(
            DIGIT_TABLE.get_unchecked((2 * exp) as usize),
            result.offset(index),
            2,
        );
        index += 2;
    } else {
        *result.offset(index) = b'0' + exp as u8;
        index += 1;
    }

    debug_assert!(index <= 24);
    index as usize
}

/// Print f64 to the given buffer and return number of bytes written. Ryū's
/// original formatting.
///
/// At most 24 bytes will be written.
///
/// ## Special cases
///
/// This function represents any NaN as `NaN`, positive infinity as `Infinity`,
/// and negative infinity as `-Infinity`.
///
/// ## Safety
///
/// The `result` pointer argument must point to sufficiently many writable bytes
/// to hold Ryū's representation of `f`.
///
/// ## Example
///
/// ```rust
/// let f = 1.234f64;
///
/// unsafe {
///     let mut buffer: [u8; 24] = std::mem::uninitialized();
///     let n = ryu::raw::d2s_buffered_n(f, &mut buffer[0]);
///     let s = std::str::from_utf8_unchecked(&buffer[..n]);
///     assert_eq!(s, "1.234E0");
/// }
/// ```
#[cfg_attr(must_use_return, must_use)]
#[cfg_attr(feature = "no-panic", no_panic)]
pub unsafe fn d2s_buffered_n(f: f64, result: *mut u8) -> usize {
    // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
    let bits = mem::transmute::<f64, u64>(f);

    // Decode bits into sign, mantissa, and exponent.
    let ieee_sign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
    let ieee_mantissa = bits & ((1u64 << DOUBLE_MANTISSA_BITS) - 1);
    let ieee_exponent =
        (bits >> DOUBLE_MANTISSA_BITS) as u32 & ((1u32 << DOUBLE_EXPONENT_BITS) - 1);
    // Case distinction; exit early for the easy cases.
    if ieee_exponent == ((1u32 << DOUBLE_EXPONENT_BITS) - 1)
        || (ieee_exponent == 0 && ieee_mantissa == 0)
    {
        return copy_special_str(result, ieee_sign, ieee_exponent != 0, ieee_mantissa != 0);
    }

    let v = d2d(ieee_mantissa, ieee_exponent);
    to_chars(v, ieee_sign, result)
}