1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
use core::num::Wrapping;
use core::ops::Neg;

use float::FloatCore;
use Num;

/// Useful functions for signed numbers (i.e. numbers that can be negative).
pub trait Signed: Sized + Num + Neg<Output = Self> {
    /// Computes the absolute value.
    ///
    /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`.
    ///
    /// For signed integers, `::MIN` will be returned if the number is `::MIN`.
    fn abs(&self) -> Self;

    /// The positive difference of two numbers.
    ///
    /// Returns `zero` if the number is less than or equal to `other`, otherwise the difference
    /// between `self` and `other` is returned.
    fn abs_sub(&self, other: &Self) -> Self;

    /// Returns the sign of the number.
    ///
    /// For `f32` and `f64`:
    ///
    /// * `1.0` if the number is positive, `+0.0` or `INFINITY`
    /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
    /// * `NaN` if the number is `NaN`
    ///
    /// For signed integers:
    ///
    /// * `0` if the number is zero
    /// * `1` if the number is positive
    /// * `-1` if the number is negative
    fn signum(&self) -> Self;

    /// Returns true if the number is positive and false if the number is zero or negative.
    fn is_positive(&self) -> bool;

    /// Returns true if the number is negative and false if the number is zero or positive.
    fn is_negative(&self) -> bool;
}

macro_rules! signed_impl {
    ($($t:ty)*) => ($(
        impl Signed for $t {
            #[inline]
            fn abs(&self) -> $t {
                if self.is_negative() { -*self } else { *self }
            }

            #[inline]
            fn abs_sub(&self, other: &$t) -> $t {
                if *self <= *other { 0 } else { *self - *other }
            }

            #[inline]
            fn signum(&self) -> $t {
                match *self {
                    n if n > 0 => 1,
                    0 => 0,
                    _ => -1,
                }
            }

            #[inline]
            fn is_positive(&self) -> bool { *self > 0 }

            #[inline]
            fn is_negative(&self) -> bool { *self < 0 }
        }
    )*)
}

signed_impl!(isize i8 i16 i32 i64);

#[cfg(has_i128)]
signed_impl!(i128);

impl<T: Signed> Signed for Wrapping<T>
where
    Wrapping<T>: Num + Neg<Output = Wrapping<T>>,
{
    #[inline]
    fn abs(&self) -> Self {
        Wrapping(self.0.abs())
    }

    #[inline]
    fn abs_sub(&self, other: &Self) -> Self {
        Wrapping(self.0.abs_sub(&other.0))
    }

    #[inline]
    fn signum(&self) -> Self {
        Wrapping(self.0.signum())
    }

    #[inline]
    fn is_positive(&self) -> bool {
        self.0.is_positive()
    }

    #[inline]
    fn is_negative(&self) -> bool {
        self.0.is_negative()
    }
}

macro_rules! signed_float_impl {
    ($t:ty) => {
        impl Signed for $t {
            /// Computes the absolute value. Returns `NAN` if the number is `NAN`.
            #[inline]
            fn abs(&self) -> $t {
                FloatCore::abs(*self)
            }

            /// The positive difference of two numbers. Returns `0.0` if the number is
            /// less than or equal to `other`, otherwise the difference between`self`
            /// and `other` is returned.
            #[inline]
            fn abs_sub(&self, other: &$t) -> $t {
                if *self <= *other {
                    0.
                } else {
                    *self - *other
                }
            }

            /// # Returns
            ///
            /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
            /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
            /// - `NAN` if the number is NaN
            #[inline]
            fn signum(&self) -> $t {
                FloatCore::signum(*self)
            }

            /// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
            #[inline]
            fn is_positive(&self) -> bool {
                FloatCore::is_sign_positive(*self)
            }

            /// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
            #[inline]
            fn is_negative(&self) -> bool {
                FloatCore::is_sign_negative(*self)
            }
        }
    };
}

signed_float_impl!(f32);
signed_float_impl!(f64);

/// Computes the absolute value.
///
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
///
/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
#[inline(always)]
pub fn abs<T: Signed>(value: T) -> T {
    value.abs()
}

/// The positive difference of two numbers.
///
/// Returns zero if `x` is less than or equal to `y`, otherwise the difference
/// between `x` and `y` is returned.
#[inline(always)]
pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
    x.abs_sub(&y)
}

/// Returns the sign of the number.
///
/// For `f32` and `f64`:
///
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// * `NaN` if the number is `NaN`
///
/// For signed integers:
///
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
#[inline(always)]
pub fn signum<T: Signed>(value: T) -> T {
    value.signum()
}

/// A trait for values which cannot be negative
pub trait Unsigned: Num {}

macro_rules! empty_trait_impl {
    ($name:ident for $($t:ty)*) => ($(
        impl $name for $t {}
    )*)
}

empty_trait_impl!(Unsigned for usize u8 u16 u32 u64);
#[cfg(has_i128)]
empty_trait_impl!(Unsigned for u128);

impl<T: Unsigned> Unsigned for Wrapping<T>
where
    Wrapping<T>: Num,
{
}

#[test]
fn unsigned_wrapping_is_unsigned() {
    fn require_unsigned<T: Unsigned>(_: &T) {}
    require_unsigned(&Wrapping(42_u32));
}
/*
// Commenting this out since it doesn't compile on Rust 1.8,
// because on this version Wrapping doesn't implement Neg and therefore can't
// implement Signed.
#[test]
fn signed_wrapping_is_signed() {
    fn require_signed<T: Signed>(_: &T) {}
    require_signed(&Wrapping(-42));
}
*/