1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//! ObjectId

use libc;

use std::sync::atomic::{AtomicUsize, Ordering, ATOMIC_USIZE_INIT};
use std::{error, fmt, io, result};

use byteorder::{BigEndian, ByteOrder, LittleEndian};
use md5;

use hex::{self, FromHexError};

use rand::{thread_rng, Rng};

use hostname::get_hostname;
use time;

const TIMESTAMP_SIZE: usize = 4;
const MACHINE_ID_SIZE: usize = 3;
const PROCESS_ID_SIZE: usize = 2;
const COUNTER_SIZE: usize = 3;

const TIMESTAMP_OFFSET: usize = 0;
const MACHINE_ID_OFFSET: usize = TIMESTAMP_OFFSET + TIMESTAMP_SIZE;
const PROCESS_ID_OFFSET: usize = MACHINE_ID_OFFSET + MACHINE_ID_SIZE;
const COUNTER_OFFSET: usize = PROCESS_ID_OFFSET + PROCESS_ID_SIZE;

const MAX_U24: usize = 0xFFFFFF;

static OID_COUNTER: AtomicUsize = ATOMIC_USIZE_INIT;
static mut MACHINE_BYTES: Option<[u8; 3]> = None;

/// Errors that can occur during OID construction and generation.
#[derive(Debug)]
pub enum Error {
    ArgumentError(String),
    FromHexError(FromHexError),
    IoError(io::Error),
    HostnameError,
}

impl From<FromHexError> for Error {
    fn from(err: FromHexError) -> Error {
        Error::FromHexError(err)
    }
}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Error {
        Error::IoError(err)
    }
}

/// Alias for Result<T, oid::Error>.
pub type Result<T> = result::Result<T, Error>;

impl fmt::Display for Error {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Error::ArgumentError(ref inner) => inner.fmt(fmt),
            Error::FromHexError(ref inner) => inner.fmt(fmt),
            Error::IoError(ref inner) => inner.fmt(fmt),
            Error::HostnameError => fmt.write_str("Failed to retrieve hostname for OID generation."),
        }
    }
}

impl error::Error for Error {
    fn description(&self) -> &str {
        match *self {
            Error::ArgumentError(ref inner) => &inner,
            Error::FromHexError(ref inner) => inner.description(),
            Error::IoError(ref inner) => inner.description(),
            Error::HostnameError => "Failed to retrieve hostname for OID generation.",
        }
    }

    fn cause(&self) -> Option<&error::Error> {
        match *self {
            Error::ArgumentError(_) => None,
            Error::FromHexError(ref inner) => Some(inner),
            Error::IoError(ref inner) => Some(inner),
            Error::HostnameError => None,
        }
    }
}

/// A wrapper around raw 12-byte ObjectId representations.
#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct ObjectId {
    id: [u8; 12],
}

impl ObjectId {
    /// Generates a new ObjectID, represented in bytes.
    /// See the [docs](http://docs.mongodb.org/manual/reference/object-id/)
    /// for more information.
    pub fn new() -> Result<ObjectId> {
        let timestamp = ObjectId::gen_timestamp();
        let machine_id = ObjectId::gen_machine_id()?;
        let process_id = ObjectId::gen_process_id();
        let counter = ObjectId::gen_count()?;

        let mut buf: [u8; 12] = [0; 12];
        for i in 0..TIMESTAMP_SIZE {
            buf[TIMESTAMP_OFFSET + i] = timestamp[i];
        }
        for i in 0..MACHINE_ID_SIZE {
            buf[MACHINE_ID_OFFSET + i] = machine_id[i];
        }
        for i in 0..PROCESS_ID_SIZE {
            buf[PROCESS_ID_OFFSET + i] = process_id[i];
        }
        for i in 0..COUNTER_SIZE {
            buf[COUNTER_OFFSET + i] = counter[i];
        }

        Ok(ObjectId::with_bytes(buf))
    }

    /// Constructs a new ObjectId wrapper around the raw byte representation.
    pub fn with_bytes(bytes: [u8; 12]) -> ObjectId {
        ObjectId { id: bytes }
    }

    /// Creates an ObjectID using a 12-byte (24-char) hexadecimal string.
    pub fn with_string(s: &str) -> Result<ObjectId> {
        let bytes: Vec<u8> = hex::decode(s.as_bytes())?;
        if bytes.len() != 12 {
            Err(Error::ArgumentError("Provided string must be a 12-byte hexadecimal string.".to_owned()))
        } else {
            let mut byte_array: [u8; 12] = [0; 12];
            for i in 0..12 {
                byte_array[i] = bytes[i];
            }
            Ok(ObjectId::with_bytes(byte_array))
        }
    }

    /// Creates a dummy ObjectId with a specific generation time.
    /// This method should only be used to do range queries on a field
    /// containing ObjectId instances.
    pub fn with_timestamp(time: u32) -> ObjectId {
        let mut buf: [u8; 12] = [0; 12];
        BigEndian::write_u32(&mut buf, time);
        ObjectId::with_bytes(buf)
    }

    /// Returns the raw byte representation of an ObjectId.
    pub fn bytes(&self) -> [u8; 12] {
        self.id
    }

    /// Retrieves the timestamp (seconds since epoch) from an ObjectId.
    pub fn timestamp(&self) -> u32 {
        BigEndian::read_u32(&self.id)
    }

    /// Retrieves the machine id associated with an ObjectId.
    pub fn machine_id(&self) -> u32 {
        let mut buf: [u8; 4] = [0; 4];
        for i in 0..MACHINE_ID_SIZE {
            buf[i] = self.id[MACHINE_ID_OFFSET + i];
        }
        LittleEndian::read_u32(&buf)
    }

    /// Retrieves the process id associated with an ObjectId.
    pub fn process_id(&self) -> u16 {
        LittleEndian::read_u16(&self.id[PROCESS_ID_OFFSET..])
    }

    /// Retrieves the increment counter from an ObjectId.
    pub fn counter(&self) -> u32 {
        let mut buf: [u8; 4] = [0; 4];
        for i in 0..COUNTER_SIZE {
            buf[i + 1] = self.id[COUNTER_OFFSET + i];
        }
        BigEndian::read_u32(&buf)
    }

    /// Convert the objectId to hex representation.
    pub fn to_hex(&self) -> String {
        hex::encode(self.id)
    }

    // Generates a new timestamp representing the current seconds since epoch.
    // Represented in Big Endian.
    fn gen_timestamp() -> [u8; 4] {
        let timespec = time::get_time();
        let timestamp = timespec.sec as u32;

        let mut buf: [u8; 4] = [0; 4];
        BigEndian::write_u32(&mut buf, timestamp);
        buf
    }

    // Generates a new machine id represented as an MD5-hashed 3-byte-encoded hostname string.
    // Represented in Little Endian.
    fn gen_machine_id() -> Result<[u8; 3]> {
        // Short-circuit if machine id has already been calculated.
        // Since the generated machine id is not variable, arising race conditions
        // will have the same MACHINE_BYTES result.
        unsafe {
            if let Some(bytes) = MACHINE_BYTES.as_ref() {
                return Ok(bytes.clone());
            }
        }

        let hostname = get_hostname();
        if hostname.is_none() {
            return Err(Error::HostnameError);
        }

        // Hash hostname string
        let digest = md5::compute(hostname.unwrap().as_str());
        let hash = format!("{:x}", digest);

        // Re-convert string to bytes and grab first three
        let mut bytes = hash.bytes();
        let mut vec: [u8; 3] = [0; 3];
        for i in 0..MACHINE_ID_SIZE {
            match bytes.next() {
                Some(b) => vec[i] = b,
                None => break,
            }
        }

        unsafe { MACHINE_BYTES = Some(vec) };
        Ok(vec)
    }

    // Gets the process ID and returns it as a 2-byte array.
    // Represented in Little Endian.
    fn gen_process_id() -> [u8; 2] {
        let pid = unsafe { libc::getpid() as u16 };
        let mut buf: [u8; 2] = [0; 2];
        LittleEndian::write_u16(&mut buf, pid);
        buf
    }

    // Gets an incremental 3-byte count.
    // Represented in Big Endian.
    fn gen_count() -> Result<[u8; 3]> {
        // Init oid counter
        if OID_COUNTER.load(Ordering::SeqCst) == 0 {
            let start = thread_rng().gen_range(0, MAX_U24 + 1);
            OID_COUNTER.store(start, Ordering::SeqCst);
        }

        let u_counter = OID_COUNTER.fetch_add(1, Ordering::SeqCst);

        // Mod result instead of OID_COUNTER to prevent threading issues.
        // Static mutexes are currently unstable; once they have been
        // stabilized, one should be used to access OID_COUNTER and
        // perform multiple operations atomically.
        let u = u_counter % MAX_U24;

        // Convert usize to writable u64, then extract the first three bytes.
        let u_int = u as u64;

        let mut buf: [u8; 8] = [0; 8];
        BigEndian::write_u64(&mut buf, u_int);
        let buf_u24: [u8; 3] = [buf[5], buf[6], buf[7]];
        Ok(buf_u24)
    }
}

impl fmt::Display for ObjectId {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(&self.to_hex())
    }
}

impl fmt::Debug for ObjectId {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(&format!("ObjectId({})", self.to_hex()))
    }
}

#[test]
fn pid_generation() {
    let pid = unsafe { libc::getpid() as u16 };
    let generated = ObjectId::gen_process_id();
    assert_eq!(pid, LittleEndian::read_u16(&generated));
}

#[test]
fn count_generated_is_big_endian() {
    let start = 1122866;
    OID_COUNTER.store(start, Ordering::SeqCst);

    // Test count generates correct value 1122866
    let count_res = ObjectId::gen_count();
    assert!(count_res.is_ok());
    let count_bytes = count_res.unwrap();

    let mut buf: [u8; 4] = [0; 4];
    for i in 0..COUNTER_SIZE {
        buf[i + 1] = count_bytes[i];
    }

    let count = BigEndian::read_u32(&buf);
    assert_eq!(start as u32, count);

    // Test OID formats count correctly as big endian
    let oid_res = ObjectId::new();
    assert!(oid_res.is_ok());
    let oid = oid_res.unwrap();

    assert_eq!(0x11u8, oid.bytes()[COUNTER_OFFSET]);
    assert_eq!(0x22u8, oid.bytes()[COUNTER_OFFSET + 1]);
    assert_eq!(0x33u8, oid.bytes()[COUNTER_OFFSET + 2]);
}

#[test]
fn test_display() {
    let id = ObjectId::with_string("53e37d08776f724e42000000").unwrap();

    assert_eq!(format!("{}", id), "53e37d08776f724e42000000")
}

#[test]
fn test_debug() {
    let id = ObjectId::with_string("53e37d08776f724e42000000").unwrap();

    assert_eq!(format!("{:?}", id), "ObjectId(53e37d08776f724e42000000)")
}